Computational chemists and mathematicians have developed a new, fast method to calculate equilibrium constants using small-scale simulations — even when the Law of Mass Action does not apply.

The Journal of Chemical Theory and Computation published the resulting algorithm and software, which the researchers have named PEACH — an acronym for “partition-enabled analysis of cluster histograms” and a nod to the method’s development in Georgia at Emory University.

“Our method will allow computational chemists to make better predictions in simulations for a wide range of complex reactions — from how aerosols form in the atmosphere to how proteins come together to form amyloid filaments implicated in Alzheimer’s disease,” says James Kindt, an Emory professor of computational chemistry, whose lab led the work.

Previously it would require at least a week of computing time to do the calculations needed for such predictions. The PEACH system reduces that time to seconds by using tricks derived from number theory.

“Our tool can use a small set of data and then extrapolate the results to a large-system case to predict the big picture,” Kindt says.